

Date: 11-11-2024

Dept. No.

Max. : 100 Marks

Time: 09:00 am-12:00 pm

SECTION A - K1 (CO1)

Answer ALL the Questions - (10 x 1 = 10)

1. Define the following

- a) Phase
- b) Colligative property
- c) Activation energy
- d) Ionic strength
- e) Catalyst

2. True or False

- a) $F = C + P - 3$
- b) Addition of solute increases the freezing point of the solution.
- c) Order of reaction can be obtained theoretically.
- d) Solid form of reactant reacts faster than gaseous form.
- e) Promoters enhance the activity of the catalyst.

SECTION A - K2 (CO1)

Answer ALL the Questions (10 x 1 = 10)

3. Answer the following

- a) Define triple point.
- b) What is an ideal solution?
- c) Define pseudo-order reaction.
- d) What is meant by parallel reaction?
- e) Define catalytic poison.

4. Match the following

- a) Lead - Silver system - depression in freezing point
- b) Cryoscopic constant - opposing reaction
- c) Zero order - enzyme
- d) Reversible reaction - two component system
- e) Bio-catalyst - Ms^{-1}

SECTION B - K3 (CO2)

Answer any TWO of the following (2 x 10 = 20)

5.	a) Draw and explain the phase diagram of water. (5)
	b) Derive Clausius – Clapeyron equation for a liquid-vapour equilibrium. (5)
6.	Explain the elevation of boiling point with thermodynamic derivation. (10)
7.	Derive an integrated rate equation and half-life for second order reaction with equal concentration of reactants. (10)
8.	Explain the different types of chemical reactions based on the number of steps involved in the

reaction with examples.	(10)
SECTION C – K4 (CO3)	
Answer any TWO of the following	(2 x 10 = 20)
9. (a) Explain the intermediate compound theory of homogeneous catalysis. (5)	(5)
(b) Distinguish between catalytic promoter and inhibitor. (5)	(5)
10. (a) Give an account of graphical representation of three component system. (5)	(5)
(b) Describe the theory of azeotropic distillation. (5)	(5)
11. (a) The decay constant of C-14 isotope is $4 \times 10^{-12} \text{ s}^{-1}$. Calculate the half-life of C-14 isotope. (5)	(5)
(b) Discuss the Lindeman hypothesis of unimolecular reactions. (5)	(5)
12. Describe the kinetics of enzyme catalysis and derive Michaelis - Menten equation. (10)	(10)
SECTION D – K5 (CO4)	
Answer any ONE of the following	(1 x 20 = 20)
13. (a) Elaborate the phase diagram of ferric chloride - water system. (10)	(10)
(b) Explain the effect of addition of solute on critical solution temperature (CST). (5)	(5)
(c) Derive Nernst distribution law and mention its limitations. (5)	(5)
14. (a) Explain any two methods to determine the order of a reaction. (10)	(10)
(b) Elaborate the factors affecting the rate of chemical reaction. (10)	(10)
SECTION E – K6 (CO5)	
Answer any ONE of the following	(1 x 20 = 20)
15. (a) Change in temperature and pH alters the enzyme activity - Justify and explain the significance of turn over number. (10)	(10)
(b) Discuss the Henry's law and its relationship with Raoult's law. (5)	(5)
(c) Distinguish between molecularity and order of reaction with example. (5)	(5)
16. (a) Discuss the significance of transition state theory in explaining kinetics of a reaction. (10)	(10)
(b) Derive a relationship between osmotic pressure and vapour pressure. (5)	(5)
(c) Elaborate the kinetics of acid catalysed hydrolysis of ester. (5)	(5)
